Announcements

- Homework 10 – Classification
 - Due Monday 05/02

- Project 3:
 - Due Monday 05/02

- No lab this week

- Project 2:
 - Great results!
 - Mean: 31.22, max 34
 - STD DEV: 2.86

- Course Evaluations:
 - Released Monday, due two weeks after

- Thursday’s content: choose your own adventure
Final Project
Final Project – Real World Data Science

- Explore a real world dataset from multiple tables
 - Choose from 8 datasets
- Ask 2 questions that the dataset can help answer
 - Hypothesis Testing
 - Prediction
- Use methods covered in in the class to answer these questions
Final Project

We will provide:

1. An overview and description of the dataset
2. A preview section with code to read in all the datasets relevant to your specific project
3. A Research Report section which contains the outline for the content of your final project.
Final Project - Report Section

1. Introduction:
 250-300 word background

2. Hypothesis Testing and Prediction Questions
 State the questions and how you plan to answer them

3. Exploratory Data Analysis
 1. Visualize!

4. Hypothesis Testing

5. Prediction

6. Conclusion
1. Introduction:
 250-300 word background

2. Hypothesis Testing and Prediction Questions
 State the questions and how you plan to answer them

3. Exploratory Data Analysis
 1. Visualize!

4. Hypothesis Testing

5. Prediction

6. Conclusion

The earlier you submit the proposal the better so we can give you more feedback
- A mathematical model
- calculated based on sample data ("training data")
- that makes predictions or decisions without being explicitly programmed to perform the task
Nearest Neighbor Classification
Pythagoras’ Formula

\[D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2}. \]
Distance Between Two Points

- Two attributes x and y:
 \[D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2} \]

- Three attributes x, y, and z:
 \[D = \sqrt{(x_0 - x_1)^2 + (y_0 - y_1)^2 + (z_0 - z_1)^2} \]
Attributes (features) of an example

Nearest Neighbor Classifier:
Use the label of the most similar training example

Population → Sample → Labels

Predicted label of the example

Training Set
Test Set
Finding the k nearest neighbors

1. Find the distance between the example and each example in the training set
2. Augment the training data table with a column containing all the distances
3. Sort the augmented table in increasing order of the distances
4. Take the top k rows of the sorted table
Attributes (features) of an example

Population → Sample → Labels → Classifier → Predicted label of the example

Model association between attributes and labels

Training Set → Test Set

Estimate classifier’s accuracy
The accuracy of a classifier on a labeled data set is the proportion of examples that are labeled correctly.

Need to compare classifier predictions to true labels.

If the labeled data set is sampled at random from a population, then we can infer accuracy on that population.