Lecture 26 – Final Project Discussion

Jupyter on your Computer

Q&A
Announcements

- Homework 10 – Classification
  - Due Monday 05/04

- Course Evaluations:
  - Due XXX

- Project 3:
  - Due Monday 05/04
Outline for Today’s Class

- Course Project
- Review
- Jupyter on your computer
- Q&A

Content for last class

- Review of entire course 55%
- Review of specific topic (reply below with topic) 5%
- Jupyter on your own computer (how to run everything from this class on your own computer) 42%
- Open Q&A 18%
- Other (comment below) 2%

38 votes
Final Project
Explore a real world dataset from multiple tables
  • Choose from 6 datasets

Ask 2 questions that the dataset can help answer
  • Hypothesis Testing
  • Prediction

Use methods covered in the class to answer these questions
6 Datasets to choose from

<table>
<thead>
<tr>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>US-wealth</td>
</tr>
<tr>
<td>airbnb</td>
</tr>
<tr>
<td>contraceptive-data</td>
</tr>
<tr>
<td>example</td>
</tr>
<tr>
<td>fma-analysis</td>
</tr>
<tr>
<td>hr-dataset</td>
</tr>
<tr>
<td>police-scorecard</td>
</tr>
</tbody>
</table>
Final Project

We will provide:

1. An overview and description of the dataset
2. A preview section with code to read in all the datasets relevant to your specific project
3. A Research Report section which contains the outline for the content of your final project.
1. Introduction:
   250-300 word background

2. Hypothesis Testing and Prediction Questions
   State the questions and how you plan to answer them

3. Exploratory Data Analysis
   1. Visualize!

4. Hypothesis Testing

5. Prediction

6. Conclusion
1. **Introduction:**
   250-300 word background

2. **Hypothesis Testing and Prediction Questions**
   State the questions and how you plan to answer them

3. **Exploratory Data Analysis**
   1. Visualize!

4. **Hypothesis Testing**

5. **Prediction**

6. **Conclusion**

The earlier you submit the proposal the better so we can give you more feedback.
Randomization

Question: How do we make our random simulations reproducible?

Answer: random.np.seed(), random.seed()
Classifiers Evaluation
Split data into training and test splits

Question: Why?

Answer: To see how well our classifier generalizes to unseed data
Scenario: Classifier to predict if a student will pass or fail, binary classification

Question: What should our features be?
  • Answer: scores on homeworks, projects, labs

Model performs 95% accuracy on test set
  • Is this a good performance?
Model performs 95% accuracy on test set

Is this good performance?

Depends:
- If 90% of students passed, 95% accuracy isn’t that great, it’s not much better than just saying everyone passed (this would get us 90% accuracy)
- If 50% of the students passed, 95% accuracy seems good

Final Project: make sure to contextualize your model’s performance with a majority baseline (always predicting one of the classes)
### Evaluation Metrics

<table>
<thead>
<tr>
<th>True Class</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Positive</strong></td>
<td><strong>Negative</strong></td>
</tr>
<tr>
<td><strong>Positive</strong></td>
<td>TP</td>
</tr>
<tr>
<td><strong>Negative</strong></td>
<td>FN</td>
</tr>
</tbody>
</table>

Image from towardsdatascience
Evaluation Metrics

- **Accuracy**: \( \frac{TP}{TP + FP + FN + TN} \)
- **Precision**: \( \frac{TP}{TP + FP} \)
- **Recall/Sensitivity**: \( \frac{TP}{TP + FN} \)
Course Outline

- Computation: Python and Tables

- Exploration
  - Discover patterns in data
  - Articulate insights (visualizations)

- Inference
  - Make reliable conclusions about the world
  - Probability & Statistics

- Prediction
  - Informed guesses about unseen data
  - Machine Learning: Regression & Classification
Textbook sections

- General features and Table methods: 3.1 - 9.3, 17.3
- sample_proportions: 11.1
- percentile: 13.1
- np.average, np.mean, np.std: 14.1, 14.2
- minimize: 15.4
Exploring Data
Describing Data

- **Qualitative:**
  - Visualizing Distributions: Chapter 7

- **Quantitative**
  - Center and spread: 14.1-14.3
  - Linear trend and non-linear patterns: 8.1, Chapter 15
General Concepts

- Study, experiment, treatment, control, confounding, randomization, causation, association: Chapter 2
- Distribution: 7.1, 7.2
- Sampling, probability sample: 10.0
- Probability distribution, empirical distribution, law of averages: Chapter 10
- Population, sample, parameter, statistic, estimate: 10.1, 10.3
- Model: every null and alternative hypothesis; 16.1
Goal of Inference

- To make conclusions about unknown features of the population or model, based on assumptions of randomness
Inference: Estimation
Question: What is the value of the parameter?

Terms: predict, estimate, construct a confidence interval, confidence level

Answer: Between x and y, with 95% confidence

Method (13.2, 13.3):

- Bootstrap the sample; compute estimate
- Repeat; draw empirical histogram of estimates
- Confidence interval is “middle 95%” of estimates

Can replace 95% by other confidence level (not 100%)
Meaning of “95% Confidence”

- You’ll never get to know whether or not your constructed interval contains the parameter.
- The confidence is in the process that generates the interval.
- The process generates a good interval (one that contains the parameter) about 95% of the time.

End of 13.2
Reasons to use a confidence interval

- To **estimate** a numerical parameter: 13.3
  - Regression **prediction**, if regression model holds:
    Predict $y$ based on a new $x$: 16.3

- To **test** whether or not a numerical parameter is equal to a specified value: 13.4
  - In the regression model, used for testing whether the slope of the true line is 0: 16.2
Inference: Testing
### Testing Hypotheses

- **Null**: A completely specified chance model, under which you can simulate data.
  - Need to say exactly what is due to chance, and what the hypothesis specifies.

- **Alternative**: The null isn’t true
  - something other than chance is going on; might have a direction

- **Test Statistic**: A statistic that helps decide between the two hypotheses, based on its empirical distribution under the null

- 11.3
Hypothesis Testing Review

1 Sample: One Category (e.g. percent of black male jurors)
- Test Statistic: empirical_percent, abs(empirical_percent - null_percent)
- How to Simulate: sample_proportions(n, null_dist)

1 Sample: Multiple Categories (e.g. ethnicity distribution of jury panel)
- Test Statistic: tvd(empirical_dist, null_dist)
- How to Simulate: sample_proportions(n, null_dist)

1 Sample: Numerical Data (e.g. scores in a lab section)
- Test Statistic: empirical_mean, abs(empirical_mean - null_mean)
- How to Simulate: population_data.sample(n, with_replacement=False)

2 Samples: Numerical Data (e.g. birth weights of smokers vs. non-smokers)
- Test Statistic: group_a_mean - group_b_mean,
  • group_b_mean - group_a_mean, abs(group_a_mean - group_b_mean)
- How to Simulate: empirical_data.sample(with_replacement=False)
The P-value

- The chance, **under the null hypothesis**, that the test statistic comes out equal to the one in the sample or more in the direction of the alternative

- If this chance is small, then:
  - If the null is true, something very unlikely has happened.
  - Conclude that the data support the alternative hypothesis more than they support the null.

- 11.3
Even if the null is true, your random sample might indicate the alternative, just by chance.

The *cutoff* for $P$ is the chance that your test makes the wrong conclusion when the null hypothesis is true.

Using a small cutoff limits the probability of this kind of error.

11.4
Regression

- Regression model 16.1
- Bootstrap confidence interval for the true slope 16.2
  - Use of this interval to test if the true slope is 0
- Bootstrap prediction interval for y at a given value of x 16.3
Classification

- Binary classification based on attributes 17.1
  - $k$-nearest neighbor classifiers

- Training and test sets 17.2
  - Why these are needed
  - How to generate them

- Implementation: 17.4
  - Distance between two points
  - Class of the majority of the $k$ nearest neighbors

- Accuracy: Proportion of test set correctly classified 17.5
Jupyter on your own
Installing Anaconda


- Open up the Anaconda Navigator

- Launch a new notebook

- Install “datascience” package:
  - pip install datascience
More instructions on setting up Jupyter

- **Resources from Brian Mailloux:**
  - [https://youtu.be/FOJG3PqxWV0](https://youtu.be/FOJG3PqxWV0)
Why Data Science

- Unprecedented access to data means that we can make new discoveries and more informed decisions
- Computation is a powerful ally in data processing, visualization, prediction, and statistical inference
- People can agree on evidence and measurement
- Data and computation are everywhere: understanding and interpreting are more important than ever
Evidence and measurements are critical ingredients for good decision-making
  • ...but they’re not enough by themselves!

Data science is a powerful complement to qualitative analysis
  • but it’s not a replacement!
How to Analyze Data

- Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

- Visualize, then quantify!

- *Perhaps the most important part:* Interpretation of the results in the language of the domain, without statistical jargon.
- Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

- Visualize, then quantify!

- Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.
Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

Visualize, then quantify! Do both using computation

Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.
- Table manipulation using Python
- Working with whole distributions, not just means
- Decisions based on sampling: assessing models
- Estimation based on resampling
- Understanding sampling variability
- Prediction
Thank you!
Course Outline

- **Computation: Python and Tables**
- **Exploration**
  - Discover patterns in data
  - Articulate insights (visualizations)
- **Inference**
  - Make reliable conclusions about the world
  - Probability & Statistics
- **Prediction**
  - Informed guesses about unseen data
  - Machine Learning: Regression & Classification
Textbook sections

- General features and Table methods: 3.1 - 9.3, 17.3
- sample_proportions: 11.1
- percentile: 13.1
- np.average, np.mean, np.std: 14.1, 14.2
- minimize: 15.4
Exploring Data
Describing Data

- Qualitative:
  - Visualizing Distributions: Chapter 7

- Quantitative
  - Center and spread: 14.1-14.3
  - Linear trend and non-linear patterns: 8.1, Chapter 15
Measures of Center

- Median
  - 50th percentile, where
  - $p$th percentile = smallest value on list that is at least as large as $p\%$ of the values
  - Median is not affected by outliers

- Mean/Average
  - Depends on all the values
  - smoothing operation
  - center of gravity of histogram
    - if histogram is skewed, mean is pulled away from median towards the tail
Standard deviation (SD) measures roughly how far the data are from their average.

SD = root mean square of deviations from average

Steps: 5 4 3 2 1
## Chebyshev’s Bounds

<table>
<thead>
<tr>
<th>Range</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>average ± 2 SDs</td>
<td>at least 1 - 1/4 (75%)</td>
</tr>
<tr>
<td>average ± 3 SDs</td>
<td>at least 1 - 1/9 (88.888...%)</td>
</tr>
<tr>
<td>average ± 4 SDs</td>
<td>at least 1 - 1/16 (93.75%)</td>
</tr>
<tr>
<td>average ± 5 SDs</td>
<td>at least 1 - 1/25 (96%)</td>
</tr>
</tbody>
</table>

True no matter what the distribution looks like
# Bounds and Normal Approximations

<table>
<thead>
<tr>
<th>Percent in Range</th>
<th>All Distributions</th>
<th>Normal Distributions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average + 1 SD</td>
<td>At least 0%</td>
<td>About 68%</td>
</tr>
<tr>
<td>Average + 2 SDs</td>
<td>At least 75%</td>
<td>About 95%</td>
</tr>
<tr>
<td>Average + 3 SDs</td>
<td>At least 88.888...%</td>
<td>About 99.73%</td>
</tr>
</tbody>
</table>
“average ± SDs” 14.2

- $z$ measures “how many SDs above average”
- Almost all standard units are in the range (-5, 5)
- To convert a value to standard units:

$$z = \frac{\text{value} - \text{average}}{\text{SD}}$$
The Correlation Coefficient $r$

- Measures *linear* association
- Based on standard units; pure number with no units
- $r$ is not affected by changing units of measurement
- $-1 \leq r \leq 1$
- $r = 0$: No linear association; *uncorrelated*
- $r$ is not affected by switching the horizontal and vertical axes
- Be careful before you use it

15.1
Definition of $r$

Correlation Coefficient $(r) =$

average of product of standard($x$) and standard($y$)

Steps: 4 3 2 1

Measures how clustered the scattered data are around a straight line

estimate of $y = r \cdot x$, when both variables are measured in standard units
estimate of $y = \text{slope} \times x + \text{intercept}$

slope of the regression line

$r \times \frac{\text{SD of } y}{\text{SD of } x}$

intercept of the regression line

$\text{mean}(y) - \text{slope} \times \text{mean}(x)$
Regression Line

- Regression line is the “least squares” line
- Minimizes the root mean squared error of prediction, among all possible lines
- No matter what the shape of the scatter plot, there is one best straight line
  - but you shouldn’t use it if the scatter isn’t linear
- 15.3, 15.4
Residuals

- Error in regression estimate
- One residual corresponding to each point \((x, y)\)
- residual
  \[= \text{observed } y - \text{regression estimate of } y\]
  \[= \text{vertical difference between point and line}\]

No matter what the shape of the scatter plot:
- Residual plot does not show a trend
- Average of residuals = 0
Inference
General Concepts

- Study, experiment, treatment, control, confounding, randomization, causation, association: Chapter 2
- Distribution: 7.1, 7.2
- Sampling, probability sample: 10.0
- Probability distribution, empirical distribution, law of averages: Chapter 10
- Population, sample, parameter, statistic, estimate: 10.1, 10.3
- Model: every null and alternative hypothesis; 16.1
Goal of Inference

- To make conclusions about unknown features of the population or model, based on assumptions of randomness
Probability theory:

- Exact calculations
- Normal approximation for mean of large random sample
- Accuracy and sample size
Equally Likely Outcomes

Assuming all outcomes are equally likely, the chance of an event A is:

\[ P(A) = \frac{\text{number of outcomes that make } A \text{ happen}}{\text{total number of outcomes}} \]
Central Limit Theorem

If the sample is
- large, and
- drawn at random with replacement,

Then, regardless of the distribution of the population,

the probability distribution of the sample sum (or of the sample mean) is *roughly* bell-shaped
Inference: Estimation
Estimating a Numerical Parameter

Question: What is the value of the parameter?

Terms: predict, estimate, construct a confidence interval, confidence level

Answer: Between x and y, with 95% confidence

Method (13.2, 13.3):

• Bootstrap the sample; compute estimate
• Repeat; draw empirical histogram of estimates
• Confidence interval is “middle 95%” of estimates

Can replace 95% by other confidence level (not 100%)
Meaning of “95% Confidence”

- You’ll never get to know whether or not your constructed interval contains the parameter.
- The confidence is in the process that generates the interval.
- The process generates a good interval (one that contains the parameter) about 95% of the time.

End of 13.2
Reasons to use a confidence interval

- **To estimate** a numerical parameter: 13.3
  - Regression **prediction**, if regression model holds: Predict $y$ based on a new $x$: 16.3

- **To test** whether or not a numerical parameter is equal to a specified value: 13.4
  - In the regression model, used for testing whether the slope of the true line is 0: 16.2
Inference: Testing
Testing Hypotheses

- **Null**: A completely specified chance model, under which you can simulate data.
  - Need to say exactly what is due to chance, and what the hypothesis specifies.

- **Alternative**: The null isn’t true
  - something other than chance is going on; might have a direction

- **Test Statistic**: A statistic that helps decide between the two hypotheses, based on its empirical distribution under the null

- 11.3
The P-value

- The chance, **under the null hypothesis**, that the test statistic comes out equal to the one in the sample or more in the direction of the alternative
- If this chance is small, then:
  - If the null is true, something very unlikely has happened.
  - Conclude that the data support the alternative hypothesis more than they support the null.
- 11.3
Even if the null is true, your random sample might indicate the alternative, just by chance.

The **cutoff** for P is the chance that your test makes the wrong conclusion when the null hypothesis is true.

Using a small cutoff limits the probability of this kind of error.

11.4
Testing Data in Two Categories

**Null:** The sample was drawn at random from a specified distribution.

Test statistic: Either count/proportion in one category, or distance between count/proportion and what you’d expect under the null; depends on alternative

**Method:**
- Simulation: Generate samples from the distribution specified in the null.

11.1 (Swain v. Alabama, Mendel)
Null: The sample was drawn at random from a specified distribution.

Test statistic: TVD between distribution in sample and distribution specified in the null.

Method:
- Simulation: Generate samples from the distribution specified in the null.

1.2 (Alameda county juries)
Comparing Two Numerical Samples

- **Null**: The two samples come from the same underlying distribution in the population.
- **Test statistic**: difference between sample means (take absolute value depending on alternative)
- **Method for A/B Testing**:
  - Permutation under the null: 12.2 (Deflategate), 12.1 (birth weight etc for smokers/nonsmokers), 12.3 (BTA randomized controlled trial)
One Numerical Parameter

- **Null**: parameter = a specified value.
- **Alternative**: parameter ≠ value
- Test Statistic: Statistic that estimates the parameter
- **Method**:
  - Bootstrap: Construct a confidence interval and see if the specified value is in the interval.
- 13.4, 16.2 (slope of true line)
Tests of hypotheses can help decide that a difference is not due to chance

But they don’t say *why* there is a difference …

Unless the data are from an RCT

• In that case a difference that’s not due to chance can be ascribed to the treatment
Prediction
Regression

- Regression model 16.1
- Bootstrap confidence interval for the true slope 16.2
  - Use of this interval to test if the true slope is 0
- Bootstrap prediction interval for $y$ at a given value of $x$ 16.3
Classification

- Binary classification based on attributes
  - $k$-nearest neighbor classifiers

- Training and test sets
  - Why these are needed
  - How to generate them

- Implementation:
  - Distance between two points
  - Class of the majority of the $k$ nearest neighbors

- Accuracy: Proportion of test set correctly classified
Why Data Science

- Unprecedented access to data means that we can make new discoveries and more informed decisions.
- Computation is a powerful ally in data processing, visualization, prediction, and statistical inference.
- People can agree on evidence and measurement.
- Data and computation are everywhere: understanding and interpreting are more important than ever.
Limitations of Data Science

- Evidence and measurements are critical ingredients for good decision-making
  - ...but they’re not enough by themselves!

- Data science is a powerful complement to qualitative analysis
  - but it’s not a replacement!
How to Analyze Data

- Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

- Visualize, then quantify!

- *Perhaps the most important part*: Interpretation of the results in the language of the domain, without statistical jargon.
How Not to Analyze Data

- Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

- Visualize, then quantify!

- Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.
Begin with a question from some domain, make reasonable assumptions about the data and a choice of methods.

Visualize, then quantify! Do both using computation.

Perhaps the most important part: Interpretation of the results in the language of the domain, without statistical jargon.
- Table manipulation using Python
- Working with whole distributions, not just means
- Decisions based on sampling: assessing models
- Estimation based on resampling
- Understanding sampling variability
- Prediction
Thank you!