Tables, Array, Sequences
Reminders

- HW00 due tomorrow
 - Individual assignment
 - Ask questions in slack #homeworks
 - Answer your peers questions as well
 - Can count for participation grade

- Lab00 due tonight
Partners for labs:

- Upgrade Zoom to v5.x
- Choose a breakout room on google sheet
 - Sheet is pinned on #labs
Question 1.1. In the next cell, assign

1. the \textbf{absolute value} of $2^5 - 2^1$
2. $5 \times 13 \times 31 + 5$.

Try to use just one statement (one line).

```python
new_year = ...
new_year
```

```python
grader.check("ql_1")
```
NameError Traceback (most recent call last)
<ipython-input-1-1ad9a283f073> in <module>()
----> 1 grader.check("q1_1")

NameError: name 'grader' is not defined

Initialize Otter
import otter
grader = otter.Notebook()
NameError: name 'new_year' is not defined

In []: new_year = ...
 new_year

In [2]: grader.check("q1_1")
Grading based on autograder

- Before we “publish” scores
 - Visible:
 - Status of tests (pass/fail)
 - Errors of failing test
 - Not visible
 - points associated with the tests

- Publish results after the assignment submission is closed
 - 2 days after deadline
If not officially registered for the course
 • BC – email class dean, cc’ me
 • CU – fill out change of registration form
Total revenue generated by arcades correlates with Computer science doctorates awarded in the US
Math doctorates awarded correlates with Uranium stored at US nuclear power plants

https://www.tylervigen.com/spurious-correlations
Table Structure

- **A Table is a sequence of labeled columns**
- **Row:** represents one individual
- **Column:** represents one attribute of the individuals

<table>
<thead>
<tr>
<th>Name</th>
<th>Code</th>
<th>Area (m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>California</td>
<td>CA</td>
<td>163696</td>
</tr>
<tr>
<td>Nevada</td>
<td>NV</td>
<td>110567</td>
</tr>
</tbody>
</table>
Creating a Table

- `Table.read_table(filename)` – reads a table from a spreadsheet

- `Table()` – an empty table
Table methods

- Creating and extending tables:
 - `Table().with_column` and `Table.read_table`

- Finding the size:
 - `num_rows`, `num_columns`

- Referring to columns: labels, relabeling and indices
 - `labels` and `relabeled`; column indices start at 0
Some Table Operations

- `t.select(label)` – constructs a new table with just the specified columns
- `t.drop(label)` – constructs a new table in which the specified columns are omitted
- `t.sort(label)` – constructs a new table with rows sorted by the specified column
- `t.where(label, condition)` – constructs a new table with just the rows that match the condition

These operations create a new table
An array contains a sequence of values

- All elements of an array should have the same type
- Arithmetic is applied to each element individually
- Adding arrays add elements (if same length!)
- A column of a table is in an array
A range is an array of consecutive numbers

- `np.arange(end)`: An array of increasing integers from 0 up to `end`
- `np.arange(start, end)`: An array of increasing integers from `start` up to `end`
- `np.arange(start, end, step)`: A range with `step` between consecutive values

The range always include `start` but excludes `end`
Array Functions & Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Chapter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>max(array)</code></td>
<td>3.3</td>
<td>Returns the maximum value of an array</td>
</tr>
<tr>
<td><code>min(array)</code></td>
<td>3.3</td>
<td>Returns the minimum value of an array</td>
</tr>
<tr>
<td><code>sum(array)</code></td>
<td>3.3</td>
<td>Returns the sum of the values in an array</td>
</tr>
<tr>
<td><code>abs(num), np.abs(array)</code></td>
<td>3.3</td>
<td>Take the absolute value of number or each number in an array.</td>
</tr>
<tr>
<td><code>round(num), np.round(array)</code></td>
<td>3.3</td>
<td>Round number or array of numbers to the nearest integer.</td>
</tr>
<tr>
<td><code>len(array)</code></td>
<td>3.3</td>
<td>Returns the length (number of elements) of an array</td>
</tr>
<tr>
<td><code>make_array(val1, val2, ...)</code></td>
<td>5</td>
<td>Makes a numpy array with the values passed in</td>
</tr>
<tr>
<td><code>np.average(array) np.mean(array)</code></td>
<td>5.1</td>
<td>Returns the mean value of an array</td>
</tr>
<tr>
<td><code>np.std(array)</code></td>
<td>14.2</td>
<td>Returns the standard deviation of an array</td>
</tr>
<tr>
<td><code>np.diff(array)</code></td>
<td>5.1</td>
<td>Returns a new array of size <code>len(arr) - 1</code> with elements equal to the difference between adjacent elements; <code>val_2 - val_1, val_3 - val_2, etc.</code></td>
</tr>
<tr>
<td><code>np.sqrt(array)</code></td>
<td>5.1</td>
<td>Returns an array with the square root of each element</td>
</tr>
<tr>
<td><code>np.arange(start, stop, step)</code></td>
<td>5.2</td>
<td>An array of numbers starting with <code>start</code>, going up in increments of <code>step</code>, and going up to but excluding <code>stop</code>. When <code>start</code> and/or <code>step</code> are left out, default values are used in their place. Default step is 1; default start is 0.</td>
</tr>
<tr>
<td><code>array.item(index)</code></td>
<td>5.3</td>
<td>Returns the i-th item in an array (remember Python indices start at 0)</td>
</tr>
<tr>
<td><code>np.random.choice(array, n) np.random.choice(array)</code></td>
<td>9</td>
<td>Picks one (by default) or some number <code>n</code> of items from an array at random. By default, with replacement.</td>
</tr>
<tr>
<td><code>np.count_nonzero(array)</code></td>
<td>9</td>
<td>Returns the number of non-zero (or <code>True</code>) elements in an array.</td>
</tr>
<tr>
<td><code>np.append(array, item)</code></td>
<td>9.2</td>
<td>Returns a copy of the input array with <code>item</code> (must be the same type as the other entries in the array) appended to the end.</td>
</tr>
<tr>
<td><code>percentile(percentile, array)</code></td>
<td>13.1</td>
<td>Returns the corresponding percentile of an array.</td>
</tr>
</tbody>
</table>
Tables & Arrays
Table methods

- Accessing data in a column
 - `Column` takes a label or index and returns an array

- Using array methods to work with data in columns
 - `item`, `sum`, `min`, `max`, and so on

- Creating new tables containing some of the original columns
 - `select`, `drop`
Questions in notebook
The table **nba** has columns

PLAYER, POSITION, and SALARY

table = Table.read_table('https://www.inferentialthinking.com/data/nba_salaries.csv')

1. Create an array containing the names of all centers (C) who make more than $15M/year

```python
centers = table.where('POSITION', 'C').where('\'15-\'16 SALARY\', are.above(15)).column('PLAYER')
```

Answer:

'Dwight Howard', 'Roy Hibbert', 'Marc Gasol', 'Enes Kanter', 'DeMarcus Cousins'