Lecture 19 — Correlation & Regression
Announcements

- Lab07 – Normal Distribution and Variance of Sample Means (short)
 • Due Wednesday 11/23

- Homework 7 - Confidence Intervals, Resampling, the Bootstrap, and the Central Limit Theorem
 • Due Thursday 11/24
 • Not the shortest

- Homeworaks:
 • Run all cells before submitting

- Dropping 2 homeworks and labs
Correlation
To predict the value of a variable:

- Identify (measurable) attributes that are associated with that variable
- Describe the relation between the attributes and the variable you want to predict
- Then, use the relation to predict the value of a variable
Visualizing Two Numerical Variables

- **Trend**
 - Positive association
 - Negative association

- **Pattern**
 - Any discernible “shape” in the scatter
 - Linear
 - Non-linear

Visualize, then quantify
The Correlation Coefficient r

- Measures **linear** association
- Based on standard units
- $-1 \leq r \leq 1$
 - $r = 1$: scatter is perfect straight line sloping up
 - $r = -1$: scatter is perfect straight line sloping down
- $r = 0$: No linear association; *uncorrelated*
Correlation Coefficient \((r) = \)**

average of product of standard\((x)\) and standard\((y)\)

Steps:
1.
2.
3.
4.

Measures how clustered the scattered data are around a straight line
Operations that leave r unchanged

R is not affected by:

- Changing the units of the measurement of the data
 - Because r is based on standard units

- Which variable is plotted on the x- and y-axes
 - Because the product of standard units is the same
Causal Conclusion

Be careful …

- Correlation measures linear association
- Association doesn’t imply causation
- Two variables might be correlated, but that doesn’t mean one causes the other
Nonlinearity and Outliers

Both can affect correlation

- Draw a scatter plot before computing r
Ecological Correlation

- Correlations based on groups or aggregated data

- Can be misleading:
 - For example, they can be artificially high
Prediction
Guess the future

Based on incomplete information

One way of making predictions:

• To predict an outcome for an individual,
• find others who are like that individual
• and whose outcomes you know.
• Use those outcomes as the basis of your prediction.
Goal: Predict the height of a new child, based on that child’s midparent height.
How can we predict a child’s height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to to 68 inches
How can we predict a child’s height given a midparent height of 68 inches?

Idea: Use the average height of the children of all families where the midparent Height is close to 68 inches.
Predicted Heights
For each x value, the prediction is the average of the y values in its nearby group.

The graph of these predictions is the **graph of averages**

If the association between x and y is linear, then points in the graph of averages tend to fall on a line. The line is called the **regression line**
Nearest Neighbor Regression

A method for predicting a numerical y, given a value of x:

- Identify the group of points where the values of x are close to the given value

- The prediction is the average of the y values for the group
Where is the prediction line?

$$r = 0.99$$
Where is the prediction line?

$r = 0.0$
Where is the prediction line?

$r = 0.5$
If the scatter plot is oval shaped, then we can spot an important feature of the regression line.
Linear Regression

A statement about x and y pairs

- Measured in *standard units*
- Describing the deviation of x from 0 (the average of x's)
- And the deviation of y from 0 (the average of y's)

On average,
y deviates from 0 less than x deviates from 0

\[y_{su} = r \times x_{su} \]
Slope and Intercept
In original units, the regression line has this equation:

\[
\frac{\text{estimate of } y \ - \ \text{mean}(y)}{\text{SD of } y} = r \times \frac{\text{given } x \ - \ \text{mean}(x)}{\text{SD of } x}
\]

Lines can be expressed by slope & intercept

\[y = \text{slope} \times x + \text{intercept} \]
Regression Line

Standard Units

Original Units

[(Average x, Average y), r * SD y]

[(0, 0), 1]
Estimate of \(y = \text{slope} \times x + \text{intercept} \)

Slope of the regression line

\[
 r \times \frac{\text{SD of } y}{\text{SD of } x}
\]

Intercept of the regression line

\[
\text{mean}(y) - \text{slope} \times \text{mean}(x)
\]